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Abstract—Intrinsic decomposition is a fundamental problem for many
computer vision and graphics applications. It requires the deep under-
standing of the physics and semantics of the environment, which still
exhibits a lot of difficulties for the popular deep learning community. In
this paper, we propose the non-local graph convolution network to tackle
this problem. We devise the regular image grid as a graph structure, by
building the non-local adjacencies whose connection weights are condi-
tioned on the deep feature similarities. We generalize the common con-
volution operation on this specialized graph-structured data, benefited
from which, our algorithm learns better non-local image prior favored
by the intrinsic properties. In order to fully explore the potential of our
algorithm, we also present a high-quality intrinsic image dataset, com-
posed of more than 20k rendered photorealistic indoor scene images
and corresponding pixel-wise annotations for albedo and chromatic
shading. Due to the realistic lighting, texture and indoor designs for the
3D scene model, the dataset demonstrates the state-of-the-art quality
for the intrinsic decomposition problem and much less domain adaption
issue compared to many other competitors. We evaluate our proposed
algorithm and dataset on both the popular intrinsic benchmark and a
wide range of application scenarios. Experimental results demonstrate
suprior performance of our algorithm than the other state-of-the-art
approaches.

Index Terms—Intrinsic decomposition, photorealistic rendering, graph
convolution

1 INTRODUCTION

He physical constituents of an image, such as albedo and
T shading, are vital for many computer vision and graphics ap-
plications. Extracting these key components is an important mid-
level vision problem, known as intrinsic image decomposition,
which is firstly defined by Barrow and Tenebaum in 1978 [2]. In an
ideally diffuse environment, the input image can be decomposed
into a pixel-wise product of an albedo and a shading image.

Intrinsic decomposition from a single input image is highly ill-
posed, since the number of unknowns is twice that of the known
values. But due to its huge application potentials, this task has
drawn much attention from the research community by leveraging
various hand-crafted priors, including the well-known Retinex
[21], non-local texture cues [44], global sparsity prior [15], [23],
etc.

As with many other challenging problems, learning-based
approaches have recently been explored to overcome the ill-
posedness for intrinsic decomposition. Usually a common
encoder-decoder structure is utilized to learn the intrinsics [13],
[26], [32], [35], [41]. To fit the piece-wise constancy requirements

for intrinsic images, a smooth prior is usually enforced via either
post-processed filtering [13], [26], [33], or regularization in the
objective functions [26], [27]. However, the aforementioned net-
work structures only are no more than a normal convolution neural
network, which is famous for maintaining the spatial locality for
filters, but may potentially restrict the performance for intrinsic
decomposition that requires the knowledge for the entire image
space.

Inspired by the success of graph convolution network for
semantic understanding in the shape domain, and the non-local
sparsity prior adopted in the classical intrinsic decomposition
algorithms [5], [11], [23], [34], [39], [44], we propose a non-
local graph convolution network tailored for our task. The design
of our non-local graph convolution operation inherits the Graph
Convolution Network (GCN) for shape classification [38], but is
modified for the 2D image structure. We treat each image point
as a vertex in the graph, and build connections between both
spatially local and non-local image points, which motivates the
graph convolution to learn more global knowledge, favored by the
intrinsic property, such as piece-wise constancy.

On the other hand, the learning-based approaches are often
sensitive to the dataset used to train their models. This is partic-
ularly true for the recently emerging deep learning techniques.
Once there’s a large discrimination between the training and
target domain, the learned network tends to suffer from poor
generalization. Indeed, most existing intrinsic image datasets have
flaws, for the example of insufficient amount of intrinsic data
(MIT [16]), insufficiently realistic rendering techniques (MPI-
Sintel [9]), limited object-level images (ShapeNet [35], MIT),
or sparse annotations for weak supervision (ITW [4], SAW [19]).
These shortcomings prevent us from taking the full advantage of
deep learning techniques. Recent efforts [26] have been devoted
to rendering realistic scene-level images using the public SUNCG
dataset. Despite the improvement obtained by their approach [26],
their results still suffers from observable noise and achromatic
shading in their rendered data.

To overcome the above limitations, in this paper we propose
a new intrinsic image dataset via photorealistic rendering based
on the availability of large-scale well-designed 3D indoor scene
models, along with the high-quality textures and lightings to
emulate the real-world environment. To the best of our knowledge,
we are also the first to provide the chromatic shading components
for the indoor scene. Experimental results demonstrate that the
proposed dataset brings the best rendered image quality over the
existing intrinsic dataset, and alleviates the domain gap issues for



Table 1

Comparison between different intrinsic datasets.

Dataset MIT [16] ShapeNet [35] | MPI-Sintel [9] IIW [4] SAW [19] CGIntrinsics [26] Ours
Year 2010 2017 2012 2014 2017 2018 2021
Scene Single object Single object Scene Scene Scene Scene Scene
Type Captured Synthetic Synthetic Captured Captured Synthetic Synthetic
Images 220 2,443,336 890 SK SK 20K 21K
Albedo Density Dense Dense Dense Sparse annotations - Dense Dense
Shading Density Dense Dense Dense - Sparse annotations Dense Dense
Shading Color Achromatic Achromatic Chromatic - - Achromatic Chromatic
Image Resolution | 300x400, etc. 256 %256 1024 x436 640x480 640x480 640x480 1280960

’-’: The corresponding labels are not available.

the learning-based approaches considerably.

We further provide comprehensive comparisons for decompo-
sition results of the proposed method and the recent state-of-the-art
methods. We demonstrate the superior performance of our method
on both the mainstream intrinsic image evaluation benchmarks
(ITW/SAW), and a variety of downstream application scenarios,
which provide more intuitive comparisons.

Our overall contributions can be summarized as follows:

e We propose the first graph convolution network tailored
for the intrinsic decomposition problem by incorporating
the non-local image prior in the network design.

e We present a new scene-level intrinsic image dataset via
large-scale photorealistic rendering. For the first time, we
provide chromatic lighting in the indoor environment,
which renders much more realistic shading component and
provides the foundation for better generalization possibil-
ities of deep networks on real scenes.

o« We demonstrate the state-of-the-art performance on vari-
ous evaluation metrics and application scenarios.

2 RELATED WORK

Dating back to the 1970s, factorizing physical properties from
images starts to attract attentions in academic society [2], [21].
The definition of intrinsic images is introduced in [2], after which
extensive intrinsic decomposition solutions have been proposed,
ranging from the classical algorithms [11], [23], [37], [44] to the
recent deep learning approaches [13], [26], [27], [29]. Due to the
ill-posedness of single image intrinsic decomposition, additional
information is explored to ease such a difficulty, such as image
sequences, depth information [11], [43] and user scribbles. In this
paper, we focus on intrinsic estimation from single input image,
which fits the most common real-world scenario. In this section,
we review the recent literature in this field first, and then discuss
the previous intrinsic datasets.

2.1 Methods

Traditional approaches. The most influential Retinex theory
[21] assumes that the albedo image is piece-wise constant while
the shading image varies smoothly and becomes the cornerstone of
many classical solutions in this field. For further constraining the
problem, many other priors are introduced to construct the intrinsic
estimation models, among which the most popular ones are the
non-local priors [11], [34], [44] and the sparsity constraints [15],
[23]. For instance, Shen et al. [34] improve decomposition quality

significantly by incorporating non-local correlation that implies
that non-adjacent points are still likely to have the same albedo
value if they have similar textures. Li et.al [23] proposes a global
sparsity constraint based on the assumption that natural images
usually comprise a small number of colors. Several methods
encode global sparsity priors by clustering algorithms to enforce
a limited number of different reflectance areas [6], [14], [30]. For
instance, [14] clusters pixels into several groups using K-means
algorithm in CIELab color space and recent work [30] adopts a
much simpler histogram-based clustering solution. Additionally,
several models construct pair-wise connections across the image
[4], [11] to utilize non-local information. The above works prove
that the non-local prior is effective for intrinsic decompositions.

Deep learning based methods. Statistics of real world
illumination and geometry is effective for resolving the inherent
ambiguity in intrinsic decomposition [1]. In the past few years,
with the availability of intrinsic image datasets (MIT, MPI-Sintel,
IIW, SAW, etc), deep learning techniques are increasingly adopted
to estimate intrinsic components [13], [29], [32], [36], [41], [46]
due to its superiority in learning statistics from large-scale data,
revealed in various computer vision tasks. In order to enforce the
piece-wise constancy for the albedo components, some traditional
knowledge are explored in the learning approaches, such as post-
processing smoothing operations [26], [33], jointly learned guided
filter [13] and smoothness loss functions [26]. Most of these
methods merely consider local smoothness for albedo without
considering its global image structure, which is characterized by
intrinsic properties.

Graph convolution networks. In recent years, graph con-
volution networks (GCNs) bring great improvements for the
problems whose data structure are highly irregular, such as point
cloud [25], [42]. Based on the spectral graph theory, [8] devises a
variant of graph convolution, which is the first prominent research
on GCNs. Then GCNs are improved or extended by other spectral
methods [18], [22] as well as spatial-based GCNs [17], [31]. Re-
cently, [38] proposes edge conditioned graph convolution, which
conducts weighted aggregations over the neighborhood around
each point and determine the connection weights based on edge
labels. In our context, we build an irregular graph structure for
images by treating each image point as a vertex, and considering
both spatially close and distant image points as the adjacency for
each vertex. We generalize the common convolution operation
on this specialized graph structure as a foundation of graph
convolution network.
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Figure 1. Schematic of the proposed non-local graph convolution layer.

2.2 Dataset

With sufficient diverse training data, deep learning approaches are
able to learn a better prior than the hand-crafted one. However, due
to the shortcomings in each of the existing intrinsic benchmarks
and network design, deep learning techniques are not able to
realize their full potential. For example, the MIT intrinsic dataset
[16] was created by capturing only a few hundreds of object-
level intrinsic images without any background, which is too few
to be well suited for deep learning solutions. Bell et al. [4]
asked workers from Amazon Mechanical Turk to label pairwise
reflectance relationships over a sparse collection of points in real
images, giving rise to the famous Intrinsic Images in the Wild
(ITIW) dataset. Kovacs et al. [20] collected multiple forms of
sparse shading annotations via crowdsourcing, known as Shading
Annotations in the Wild (SAW). Recently, various large-scale
intrinsic datasets have been created via rendering techniques,
based on either an open-source 3D animation movie [9], a small
number of synthetic outdoor environments [3], a collection of 3D
shapes [10], [36] or a large-scale indoor scene models [24], [26].

One of the closest datasets to ours is CGlIntrinsics [26], which
rendered about 20K indoor scene images from the 3D synthetic
dataset SUNCG [40]. Very recently, [24] created InteriorNet,
which contains an even larger number (20M) of synthetic indoor
images, which however renders 1K continuous frames per scene
and thus has similar scene diversity as CGlntrinsics and our
dataset. Both of these datasets don’t provide rendered shadings,
which are instead computed and have many artifacts. Their syn-
thetic images also suffer from limited rendering quality.

3 APPROACH

In this section, we first describe how a graph convolution layer is
constructed in the image domain in Sec. 3.1, then introduce the
full network structure in Sec. 3.2, followed by the loss functions
in Sec. 3.3.

3.1

As illustrated in Figure 1, the input to the graph convolution layer
is a feature map F™ € R*"*" with ¢ channels and size of
h X w. The graph convolution layer operates in three parallel
branches. The first one gs¢;r learns to transform the pixel-wise
feature vectors. Each input feature vector Fi™ located at point p;
of size c is mapped to a feature vector Ffel} . The second branch
Jlocal learns to aggregate the local feature information of each
point by filtering its surrounding neighbors to generate Fli"cal.
These two operations are implemented via the normal convolution
layers of kernels 1 x 1 and 3 X 3 separately. They target at
extracting the local features, while the third branch g,;, learns

Graph convolution layer
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to aggregate the non-local feature vectors, which is formulated as
follows.

For each feature vector FZ” at point p;, it selects k£ random
feature vectors across the whole feature map as neighbors, and
constructs the connections between F¢™ and each of its neighbors.
The feature vectors and corresponding connections serve as vertex
and edge to form the undirected graph G.

G= {V’ E}a
V = {p;|Vp; € Fi" i € [1,N]}, €))
E = {eijlei; =<pi,pj >, pj € N(pi),pi € V},

where N = h X w is the number of feature points, and N (%) is
the set of neighboring points of p;.

Then the output of the non-local aggregation layer Ffl“ is
calculated as the weighted combination of the randomly sampled
feature vectors around point p;:

1 . _
nla __ mn mn
Fi - % § JEN (D) gnla(Fi 7F_7 )7 (2)

where g,1, aggregates the feature vector Fji" with a weighting
factor w; ; conditioned on the difference between the two points
p; and p;, computed as:

Inia(FI", F}”) =w;; O F;n, 3)

where © represents the element-wise multiplication between two
vectors, and the weighting vector w; ; is calculated by:

Wi i = Gnla_mip (C’oncat ((Fzm — ij) ,di7j)) , @

where gniq_mip is implemented as the multi-layer perception. d;_;
is calculated as the root mean square error (RMSE) between the
two point positions:

2 2
dij = \/(xi — ;)" + (yi —y;)" Q)
(@i,v;) and (z;, y;) are the 2D coordinates of p; and p; within
Fin,
Therefore, the overall output of the graph convolution layer
is the output summation of the feature transformation layer, local
and non-local feature aggregation layers,

F;_)ut — FiSEZf + Filocal + Finla. (6)

3.2 The overall framework with graph convolution

We adopt the common encoder-decoder network structure as the
backbone of our framework. Our algorithm takes an image as
input, and feeds it to the encoder of 6 convolution layers. The
intermediate feature maps are processed by two decoders whose
structure is a mirror of the encoder, to generate albedo and
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Figure 2. Demonstration of the requirement for global understanding of
intrinsic properties. Left: the inter-reflection in blue circle is caused by
the pink cabinet in green circle; Right: the inconsistent colors in two blue
circles share the same albedo. Both the circles in the same example are
spatially distant.

shading separately. We build the skip connection between the
corresponding layers in both the encoder and decoder.

Inferring the intrinsic information requires the global under-
standing of the entire image domain. For the left example in Figure
2, the pink colors on the floor tiles are indirectly reflected from the
pink cabinet in green circle. In order to recover the correct shading
on the floor, the deep network needs to learn the global information
across the whole image; for the right example, the carpet on the
floor is made of the same material and share the same albedo,
while the part in green circle is in covered under shadows, and
estimating its correct albedo requires the learned deep network to
retrieve the distant information from the blue circle.

However, the pure encoder-decoder neural network is limited
in the size of receptive field, and learns relatively local features. In
order to ease such a limitation, we incorporate the non-local cues
from the graph convolution layer into our deep neural network.
To be specific, we append four graph convolution layers after
the encoder, and forwards its output to both albedo and shading
decoders.

Post-processed refinement. Many previous learning-based
approaches leverage a post-processed filtering module for albedo
refinement [13], [26], [33]. Some other work [27], [29] includes a
sparsity prior in the constructed supervised loss to generate a clean
albedo. Inspired by this type of work, in this paper, we introduce
a refinement module, which is instead a fixed filter, but a learned
deep network.

Given an input image and an input structure map, the deep
network is designed to maintain the important image structure
of the input image guided by the input structure map, while
eliminating the unimportant details. During the training phase, the
refinement module takes the untouched natural image along with a
structure map as input, and the filtered natural image using [6] as
ground truth label. The filtered image exhibits strictly piece-wise
constant regions grouped by superpixels of similar color intensities
favored by albedo properties, and the structure map is computed
from the filtered image following [13]. Hence the deep network
learns to map the input image to the ground truth label based on the
guided structure map. During the evaluation phase, it transfers the
learned knowledge for albedo refinement by replacing its inputs
with the predicted albedo and albedo structure.

Unlike the traditional image filters that follow fixed operations,
our alternative learns refinement for the albedo implicitly within a
deep neural network, which learns more complex image manipula-
tions and hence achieve better performance as validated in Section
7.1 about ablation study.

4

Implementation details. The proposed network framework is
implemented in PyTorch framework with mini-batch size of 6 and
is optimized by Adam algorithm. During the training process, the
initial learning rate is set to 0.01, and changed to 0.0005 while
finetuning on ITW/SAW dataset. The refinement module is solely
trained with learning rate of 0.01 and batch size of 4.

3.3 Loss and Training

In this section, we introduce the loss functions used for supervising
our network. In order to render photorealistic images that alleviate
the domain gap between the synthetic and real data, besides the
pixel-wise annotations for albedo (A) and shading (.S), we also
render four more visual components, specularity (S P), reflection
(RE), refraction (RA) and self-illumination (ST), which however
doesn’t belong to either albedo or shading. We mask out these
regions for supervision,

if (SP, + RE; + RA; + SI;) > 0,

0
- 7
! {1 otherwise; ™

where 4 indicates the pixel index, and M is the computed mask.
For remaining regions, the loss function is formulated as:

L=Lig+ LR, ®)

where L;p and L are separately for the intrinsic estimation
(IE) and refinement (IR) network. The loss functions for the first
module are supervised on both the predicted albedo A and shading
S, which are given by

EIE = EMSE —|— )\g[’g'rad + Arﬁrecon (9)

where Ay, and A, are the balance weights. Lyrsp and Lgrqq
are the commonly adopted mean squared error (MSE) and image
gradient loss:

Luse =|1A—Al3+]1S - |3,
Cgrad = ||v;4v* VA”% + ||V§7 VS”%,

(10)

an

where A and S are predicted albedo and shading. We further
append a self-supervised photometric reconstruction loss by syn-
thesizing the image from its estimated counterparts assuming the
ideal diffuse environment,

£reconstruct = ||g® 5 - I||§ (12)

Following the previous work [12] to supervise the refinement
module, L7 is simply defined as,

Lir=||R— R, (13)

where R is the output of refinement module in the training phase,
and R is the image processed by [6]’s approach. Note the major
intrinsic estimation network and following refinement network are
trained separately with L5 and L, and combined later to form
our full evaluation pipeline.

4 PROPOSED DATASET

We render 21,478 triplets of indoor scene images, including one
color image along with its albedo and shading components for
each instance. We split the dataset into 18,256 images for training
and the others for evaluation. The natural appearance of our data
is mainly due to the following factors:
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Figure 3. Comparison between rendered images with (left) and without (right) the extra illumination effects (reflection, refraction, self-illumination
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Figure 4. Rendered intrinsic image comparison between our proposed one (left four) and CGintrinsics [26] (right three). From top to bottom: input,

albedo, shading and magnified region in the input.

Scene layout: In order to build our dataset, we collect 5730
synthetic 3D indoor scene models from a third-party interior
design platform®. The synthetic scenes are designed for residual
buildings, including the combination of living rooms, bedrooms,
kitchens, bathrooms, efc. They are modeled by hundreds of pro-
fessional designers/artists, and have been applied in the real-world
scenario for home decoration purpose. Hence they highly resemble
the natural arrangement of the daily life environment.

Lighting setup: We implement many kinds of light sources
in the environment to simulate the real-world visual appearance.
Besides the common global illumination and inter-reflections, we
also render the reflection, specularity, refraction of the transpar-
ent objects, and the self-illumination objects in the scene. We
demonstrate one example in Figure 3, the extra more complex
illumination effects make the rendered image more photorealistic.

Texture diversity: The 3D scenes are equipped with 800k
texture maps, which are randomly sampled to form the synthetic
scenes. The large texture diversity can be observed from the
rendered images shown in Figure 4 and the supplemental material.

Rendering details: We adopt the render engine from Embree*
with the Deterministic Monte Carlo (DMC) approach to render
the image. The images are rendered under the resolution of

3. https://www.3vjia.com/
4. https://www.embree.org/

1280% 960, with 3228 samples per pixel. Rendering one image of
our photorealistic quality in similarly complex indoor environment
is time-consuming, which requires hours of computation on a
desktop workstation. To accelerate the rendering process, we
employ distributed rendering via 32 servers with 32 CPU cores
on each, which helps decrease the total rendering time to 537
hours, equivalent to about 22 days. On average, our system only
takes 90 seconds to render a 1280x960 image.

We compare various publicly available intrinsic datasets in
Table 1. MIT [16] and ShapeNet-intrinsics [35] provide object-
level intrinsic images which is either limited by the dataset size
or rendering realism. [IW [4] and SAW dataset [19] targets at
scene-level real images with only sparse annotations obtained
from human judgements by crowdsourcing. On the other hand,
MPI [9] also focuses on scene-level images, but it’s rendered on
animations that lack realism either. The most related dataset to
ours is CGlntrinsics [26]. Compared to it, our dataset provides
higher image resolution and chromatic lighting in the shading
image, which is instead computed in CGlntrinsics.

In Figure 4, we compare the visual images between CGIn-
trinsics and ours. They exhibit apparent rendered noises, simpler
indoor scene layout and only chromatic lighting.



5 EXPERIMENTAL RESULTS

In this section, we firstly study the effectiveness of our proposed
dataset for improving the intrinsic decomposition performance in
Sec. 5.1, and then compare with state-of-the-art approaches on
ITW and SAW test sets in Sec. 5.2 and the wild images in Sec. 5.3.

Table 2
Comparison of the effectiveness of different datasets.
Training data Method WHDR | AP7?
(ITW) (SAW)
Shi et al. 2017 [35] 34.55% 92.33%
CGlntrinsics Fan et al. 2018 [13] 27.13% 93.81%
77 Lietal 2018 [26]  19.94% 92.09%
Ave. 27.21% 92.74%
Shi et al. 2017 [35] 20.53% 95.84%
Ours Fan et al. 2018 [13] 20.89% 92.96%
Lietal 2018 [26] 18.34% 97.66%
Ave. 19.92% 95.48%

J: higher is better. 1: lower is better.

5.1 Effectiveness of our dataset

We justify our dataset by comparing it with the closest dataset
to ours, CGlIntrinsics. We train three state-of-the-art learning
based intrinsic estimation algorithms on either CGlntrinsics or
our dataset, and evaluate their performance on the intrinsic image
benchmark, IIW [4] and SAW [20], which are collected on real
images with sparse annotations. We remove any post-processed
filtering module for a fair comparison of the intrinsic quality. All
the methods are trained with their publicly available codes by only
changing the training data. As shown in Table 3, we average the
results computed among three different methods, and the networks
trained on our dataset achieve much superior performance com-
pared to CGlntrinsics. It justifies the effectiveness of our dataset
despite of the differences in network structures and loss functions,
and our dataset also shows better generalization possibility on real
images.

Table 3
Quantitative comparison on [IW/SAW test sets.

Methods WHDR | (ITW) AP 1 (SAW)
Retinex (color) [16] 26.89% 85.26%
Garces et al. 2012 [14] 25.46% 92.39%
Zhao et al. 2012 [45] 23.20% 89.72%
Bell et al. 2014 [4] 20.64% 92.18% -
Shi et al. 2017 [35] 59.40% 81.30%
Narihira et al. 2015 [41] 37.30% 86.08%
Zhou et al. 2015 [46] 19.95% 86.34%
Nestmeyer et al. 2017 [33] 17.69% 88.64%
Fan ef al. 2018 [13] 14.45% 85.13%
Li et al. 2018 [26] 14.80% 96.57%
Ours 17.92% 96.17%
Ourst 15.10% 96.65 %

+: finetuning on ITW and SAW dataset.

5.2 Evaluation on the IIW/SAW dataset

In this section, we provide a more comprehensive comparison
between the proposed method and state-of-the-art intrinsic de-
composition approaches. Following the previous work [26], we
finetune our network on IIW and SAW datasets after training on
our proposed dataset from scratch. During the finetuning process,
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we follow the train/test split in [13], [26] and utilize the ordinal
reflectance loss and SAW shading loss presented in [26] for
supervision. To make full use of the sparse label provided in the
ITW dataset, we also use the augmented labels provided by [26].

The numerical results are reported in Table 3. By solely train-
ing on our rendered dataset, we achieve promising performance
for albedo (WHDR: 17.92%) and shading (AP: 96.17%), which
is better than all the non-learning approaches and most learning
based methods. Especially on the SAW benchmark, our approach
ranks the second best among all the previous approaches without
finetuning. It demonstrates the promising generalization ability of
our algorithm to real world images. After finetuning our network,
our method achieves comparable performance (WHDR: 15.10%;
AP: 96.65%). Instead of training our network from scratch like all
the previous competitors [13], [26], [33], our results are obtained
only via finetuning.

The corresponding qualitative results are shown in Figure 5.
We show three cases from the IIW and SAW test sets, among all
of which our approach shows superior ability to separate albedo
from shading. Our shading results exhibit chromatic lighting in
the scenes, including the self-illuminated light source and inter-
reflections bounced between objects, while all of other three
methods [13], [26], [33] are limited by the achromatic shading
output. On the albedo side, the results from other methods all show
somewhat unnatural colors and fail to eliminate the lightings here
or there, while our predicted albedo images appear more natural
colors.

Moreover, as the shading images for [33] and [13] are com-
puted from the input color and predicted albedo image, the texture
in the input image tends to fall into the shading image as long
as the albedo is not perfectly predicted. Due to the smoothness
regularization enforced in the objective function in [26], their
shading outputs are over-smoothed and do not reflect much ge-
ometry information of the scene. The aforementioned issues are
not observed in our predicted intrinsic images.

Note as pointed out by the previous work [33], [46], the
annotations in the [TW dataset is biased on judgements of the same
albedo, which occupy 2/3 of all the relative judgements. Hence
a heuristic rescaling of the input image from [0,1] to [0.55,1]
achieves a comparable WHDR of 25.7 without running intrinsic
estimation algorithms, since there’s a bigger chance that equal
albedo occurs on the relative points in [IW annotations, discussed
in [33]. Therefore directly training on the IIW and SAW dataset
may overfit the distribution exhibited by their training data. Our
framework chooses to train on the synthetic data first and finetune
on the IIW and SAW dataset, where our rendered data could
present a less-biased intrinsic prior that avoids overfitting in the
IIW and SAW data. This could explain why the visual comparison
between other results and ours demonstrates larger performance
gap, compared to the numerical ones.

5.3 Evaluation on unseen data source

The performance for deep learning based methods is likely to
suffer significant degradation when there is a large domain gap
between the training data and the test data. As our method is
mainly trained on rendered data, it’s necessary to evaluate how
it performs on images in the wild. Therefore, we compare our
model with [13], [26], [33] on some self-collected real world
images in Figure 6, where we generate much superior intrinsic
decompositions.
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Figure 5. Qualitative comparison on images from IIW/SAW test sets. For each example, the albedo images for different methods are placed in the
first row while the corresponding shading images are placed in the second row. Ours with “+” refers to finetuned results.

For the example of the first case, the albedo images recovered
by [13], [26], [33] are heavily affected by the light transitions
and lose the ceramic textures in the albedo. The second case
demonstrates very strong inter-reflections in the environment,
while the other approaches fail to separate the chromatic reflec-
tions into shading. Finally, we demonstrate an example of outdoor
scene, which is not exhibited in the training data. Our approach
successfully removes the letters on the boat in the shading image,
while others do not.

6 APPLICATIONS

Intrinsic decomposition is a middle-level vision task and is more
valuable only when applied to the downstream applications. In
this section, we explore a couple of applied scenarios for intrinsic
decomposition and further demonstrate the effectiveness of our
algorithm.

6.1 Texture editing

Texture editing is conducted by replacing the estimated albedo
with the preferred ones, and recompose the image using untouched
shading and modified albedo. This can be used to reveal the quality
of recovered shading, which however often suffers from wrongly
separated textures and over-smoothing effects.

We demonstrate three examples in Figure 7. In the first case,
the eyes and eyebrows of three pigs in the first row are modified
in each albedo image, where we adaptively remove the original
patterns here and the color of nearby areas remains consistent
before and after modification. [13] fails to remove the texture

of these areas in the predicted shading image, which makes
the original patterns occur in the recomposed image and cause
artifacts. The recomposed result of [26] is better than [13]’s, but it
still has artifacts that look like shadows around eyes and eyebrows,
which are caused by the remaining texture of their shading result.
For the second example, we exchange the positions of the two
paintings hanging on the wall. Similar phenomenon in the first
case is also observed here. The painting at the original poisition
remains in the recomposed results both for [13] and [26]. Besides,
[13] over-smoothes the albedo, and hence its recomposition lacks
painting details.

6.2 Lighting editing

Lighting editing is conducted by modifying the shading image and
recomposing with the modified shading and untouched albedo. It
can also be used to evaluate the quality of estimated albedo.

We demonstrate two examples in Figure 8. In the first case,
we smooth out the highlight area lit by the lamp for the shading
image. Since both [13] and [26] fail to remove the lighting in
their estimated albedo, their recomposed images still exhibit such
lighting, while only our method’s output successfully gets rid of
the light emitted from the lamp. In the second example, we simply
modify the shading component to be grayscale. Obviously, the
recomposed images from the other approaches still demonstrate
chromatic lighting in the scene, which however doesn’t appear in
our result. This is mainly due to the fact that their estimated shad-
ing is grayscale already, and chromatic lighting are all wrongly
separated into the albedo.
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Figure 6. Qualitative comparison on images in the wild. For each example, the albedo images for different methods are placed in the first row while

the corresponding shading images are placed in the second row.

Following the experiment setting in [46], we take several
image sequences from [7] and [28] for the relighting application.
Each frame of the same image sequence is taken under different
lighting conditions. We demonstrate two examples in Figure 9, for
each of which, there are two images taken from the same scene.
After recovering the intrinsic images, the recomposition is done
by switching each other’s shading image and recombining with
its own albedo. Visually, our recomposed results are most closest
to the input images, while there’s always a color shift for other
methods.

Table 4
Ablation study results of the proposed method

Methods WHDR | (ITW) AP 1 (SAW)

Ours (W/0 huyim) 19.08% 92.19%

Ours (w/o hy) 20.89% 96.17%

Ours (w/o other components) 17.65% 94.94%

Ours (CGlntrinsics) 18.13% 93.10%

Ours 17.92% 96.17 %
7 ANALYSIS

7.1 Ablation Study

In this section, we analyze the contribution of each component in
our method including the proposed dataset. The predicted albedo

and shading are evaluated on the IIW and SAW dataset without
finetuning the network. The numerical results are summarized in
Table 6.2.

Effectiveness of the non-local graph module. To investigate
the effectiveness of the adopted non-local module A, we train
a variant of our network in which h,,;,, is removed while other
settings are unchanged. As the numerical results in the first row of
Table 6.2 show, compared with the results of our full model, the
performance on both two components suffers noticeable degrada-
tions especially for the shading component. This demonstrates that
the proposed the non-local module h,,;,,, plays an essential role in
our method.

Contribution of the refinement module. As shown in Fig-
ure 5 and Figure 6 , the reflectance consistency prior is well
represented in our decomposition results while over-smoothing
phenomenon is avoided to the largest extent. To reveal the contri-
bution of our refinement module A, quantitatively, we remove the
refinement module from the full model and test the performance
and report it in Table 6.2.Without h,., an apparent degradation is
observed on the WHDR error, which increases to 20.89%, while
SAW AP result is unchanged as h,. is only applied to the albedo
component. This means that the proposed refinement module is
able to improve the albedo performance effectively.

Value of other irradiance components. As described in Sec.
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Figure 7. Two examples of retexturing. In the first example, the eyes and eyebrows for three pigs in the first row are modified adaptively for each
albedo image. Then the re-rexturing outputs are produced by the modified albedo images and the unchanged shading images. In the second
example, we exchange the positions for two paintings hanging on the wall for all albedo images and then get the outputs.

Li [26]

Figure 8. Lighting editing application. Top: for the shading image, we smooth out the reflected lights on the wall lit by the lamp, which is highlighted
by the blue box; Down: we adjust the illumination in the environment by changing the estimated shading to grayscale.

4, our dataset not only encodes diffuse material but also non-
diffuse materials into the input images, which may influence the
estimation of albedo and shading components. To explore how
these non-diffuse irradiance components affect the performance,
we recompose the input images using ground truth albedo and
shading images excluding other components and train our full
network on them. The performance for this variant is shown in
Table 6.2, which demonstrates a noticeable degradation on SAW
AP and a negligible improvement on WHDR error. It indicates that
these non-diffuse components exert effective influence on shading
prediction.

Role of the proposed dataset. To investigate the contribution
of the proposed dataset, we train our network by substituting
our dataset with CGlIntrinsics dataset [26], which are closest to
ours in spirit, and report the evaluation results in Table 6.2.
Experimentally, we find both of the numerical results for albedo
and shading are degraded, among which the shading performance
is much worse than that of our full model trained on the proposed
dataset. This further demonstrates our dataset’s effectiveness for
improving the performance for intrinsic estimation.

8 CONCLUSION

In this paper, we devise a graph convolutional network for
intrinsic decompostion, in which non-local cues are utilized in
an explicit manner. In order to overcome the limitations within
existing datasets, we render a new photoreslistic dataset of high
quality, in which rendered dense labels for albedo and shading

are available. The shading labels in our dataset first considers
chromatic lighting, which enables our model to better separate
material properties and lighting effects especially those introduced
by inter-reflections between diffuse surfaces. The effectivess of the
proposed method is comprehensively evaluated by conducting a
series of comparisons with the competetitors. More interestingly,
we apply the decomposition results of both our method and two
latest state-of-the-art methods [13], [26] to a range of application
scenarios and visually demonstrate the application potentials of
each method.
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